i

Proceso de ventanilla abiertad de Revista de Investigaciones Geográficas: se invita a enviar los artículos completos mediante la plataforma oficial de la revista. Para más información, por favor revisar este enlace

Un nuevo catálogo de terremotos para la República de Nicaragua

Autores/as

Resumen

Se presenta un nuevo catálogo de terremotos de Nicaragua confeccionado a partir de todas las fuentes disponibles, su unificación a magnitud MW, la extracción de los agrupamientos más importantes en la depresión de Nicaragua y la preparación de una variante sin eventos relacionados. El catálogo consta de 76.935 terremotos de los cuales 74.500 tienen al menos una determinación de magnitud. De estos, solo para 24 no se pudo transformar su magnitud a MW. La variante sin eventos relacionados consta de Se analizan los parámetros del régimen sísmico (a,b,Mmax) en siete zonas delimitadas convencionalmente. Se determinan las características estadísticas de los agrupamientos seleccionados (ajuste de los modelos ETAS y Omori modificado). Se analiza el comportamiento temporal de la liberación de energía en dos zonas (subducción Pacífico y depresión de Nicaragua) y se preparan para ambos los gráficos espacio temporales a partir del inicio del siglo XX. Se realizan estimados de los lugares de ocurrencia de eventos fuertes en el futuro mediato y se estima su magnitud máxima. Las Mmax posibles son de 6,5 para las zonas en la depresión de Nicaragua y 7,8 en la zona de subducción del Pacífico.

Palabras clave:

catálogo de terremotos, ley de Omori, modelo ETAS, sismicidad

Referencias

Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans. Automat. Control, AC-19(6), 716-723. DOI: 10.1109/TAC.1974.1100705
Alvarado, G.E.; Benito, B.; Stallerb, A.; Climent, A.; Camacho, E.; Rojas, W.; Marroquín, G.; Molina, E.; Talavera, E.; Martínez-Cuevas S & Lindholm, C. (2017): The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework. Tectonophysics, 721, pp. 462–476. https://doi.org/10.1016/j.tecto.2017.10.013
Algermissen, S.T.; Dewey, J.W.; Langer, C.J. & Dillinger, W.H. (1974) The Managua, Nicaragua, earthquake of December 23,1972: Location, focal mechanism, and intensity distribution. Bull. Seism. Soc. Am., 64(4), pp. 993-1004.
Alvarez, L. (1985): Sismicidad de Cuba Oriental (en ruso). Tesis de Candidato en Ciencias. Instituto de Física de la Tierra, Academy of Ciencias de la URSS, Instituto de Geofísica y Astronomía, Academia de Ciencias de Cuba, 162 pp.
Alvarez, L. (2021): Nueva estimación de la amenaza sísmica para Nicaragua. Revista Tierra, vol. 1, No. 2, https://revistatierra.unan.edu.ni (en prensa).
Alvarez, L. & Segura, F. (2016): Sismicidad de la zona de ocurrencia de los terremotos. Bol. Sismos y Volcanes de Nicaragua, septiembre 2016, pp. 17-24. https://webserver2.ineter.gob.ni/sis/bolsis/bolsis.html
Alvarez L.; Lindholm, C. & Villalón, M.; (2017): Seismic Hazard for Cuba: A New Approach. Bull. Seism. Soc. Am., vol 107(1), pp. 229-239. https://doi.org/10.1785/0120160074
Alvarez, L.; Rodríguez, A.M.; González, O.; Moreno, B. & Cabrera, A. (2018): Seismotectonics of the Nicaraguan Depression from Recent Seismicity. J. Geol. Geophys. 7(5). DOI: 10.4172/2381-8719.1000446
Bakun, W.H. (1984): Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California, Bull. Seism. Soc. Am., 74(2), 439-485. https://doi.org/10.1785/BSSA0740020439
Benito, B. & Torres, Y., edit. (2009): Amenaza sísmica en América Central. Entimema, Madrid, 372 pp. ISBN: 978-84-8319-474-4
Bondár, I., Engdahl, E.R.; Villaseñor, A.; Harris, J. & Storchak, D.A. (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009): II. Location and seismicity patterns, Phys. Earth Plan. Int., 239, 2-13. https://doi.org/10.1016/j.pepi.2014.06.002
Bondár, I. & Storchak, D. (2011): Improved location procedures at the International Seismological Centre, Geophys. J. Int., vol. 186(3), 1220-1244. https://doi.org/10.1111/j.1365-246X.2011.05107.x
Chuy, T. (1985): Datos macrosísmicos de la República de Nicaragua. En: Inv. Sismol. en Cuba, No. 5, pp. 95-142. La Habana, Cuba
Dewey, J.W. &. Algermissen, S.T. (1974): Seismicity of the Middle America arc-trench system near Managua, Nicaragua. Bull. Seism. Soc. Am., 64(4), 1033-1048.
Engdahl, E.R.; van der Hilst, R. & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88(3), 722-743.
Engdahl, E.R. & Villaseñor, A. (2002): Global Seismicity: 1900-1999, in Lee, W.K.H.; Kanamori, H.; Jennings, P.C. & Kisslinger, C. (edit.), International Handbook of Earthquake and Engineering Seismology, Part A, Chapter 41, pp. 665-690, Academic Press, 2002.
Fischer, T. & Hainzl, S (2017): Effective Stress Drop of Earthquake Clusters. Bull. Seism. Soc. Am., 107(5), 2247–2257. https://doi.org/10.1785/0120170035
French, S.W.; Warren, L.M.; Fischer, K.M.; Abers, G.A.; Strauch, W.; Protti, J.M. & Gonzalez, V. (2010): Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis, Geochemistry, Geophysics, Geosystems, 11(3): https://doi.org/10.1029/2009GC002841
GCMT (2019): The Global CMT Project. https://www.globalcmt.org/
González, O.; Moreno, B. & Alvarez, L. (2015): La serie de terremotos de El Sauce, septiembre – octubre de 2015. Informe. Fondos de INETER, 40 pp.
Hanks, T.C. &Kanamori, H. (1979). A moment magnitude scale, J. Geophys. Res., 84(B5), pp. 2348–2350. https://doi.org/10.1029/JB084iB05p02348
Hurukawa, N. & Imoto, M. (1990): Fine structure of an underground boundary between the Philippine Sea and Pacific plates beneath the Kanto district, Japan, Zisin (J. Seismol. Soc. Jpn.), 43, pp. 413-429 (en japonés con resumen en inglés).
Hurukawa, N. & Imoto, M. (1992): Subducting oceanic crusts of the Philippine Sea and Pacific plates and weak-zone normal compression in the Kanto district Japan, Geophys. J. Int., 109(3), 639-652. https://doi.org/10.1111/j.1365-246X.1992.tb00122.x
INETER (2014): Estudios especiales del terremoto del 10 de abril y sus réplicas. Boletín mensual de sismos y volcanes. Abril, 2014, 128 pp. https://webserver2.ineter.gob.ni/sis/bolsis/bolsis.html
INETER (2019): Archivos de datos de la red de estaciones de Nicaragua. Fondos de INETER.
ISC (2020): On-line Bulletin, https://doi.org/10.31905/D808B830
ISC (2020a): ISC-EHB dataset, https://doi.org/10.31905/PY08W6S3
Kennett, B.L.N.; Engdahl, E.R. & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical J. Int. 122(1), 108-124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
Kijko, A. (2004): Estimation of the maximum earthquake magnitude, mmax, Pure Appl. Geo., 161(8), 1655-1681. https://doi.org/10.1007/s00024-004-2531-4
Kijko, A. (2020): Program AUE under Matlab, version 3.01. University of Pretoria, South Africa
Kijko, A.; Sellevoll, M.A. (1989): Estimation of earthquake hazard parametersfrom incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes, Bull. Seism. Soc. Am., 79(3), 645-654. https://doi.org/10.1785/BSSA0790030645
Kijko, A. & Singh, M. (2011): Statistical Tools for Maximum Possible Earthquake Magnitude Estimation. Acta Geophysica, 59(4), 674-700. https://doi.org/10.2478/s11600-011-0012-6
La Femina, P.C.; Connor, C.B.; Hill, B.E.; Strauch, W. & Saballos, J.A. (2004): Magma–tectonic interactions in Nicaragua: The 1999 seismic swarm and eruption of Cerro Negro volcano. J. Volcanology. & Geoth. Res. 137(1-3), 187-199. https://doi.org/10.1016/j.jvolgeores.2004.05.006
Lee, W.H.K.; Bennett, R.E. & Meagher , K.L. (1972): A method of estimating magnitude of local earthquakes from signal duration. USGS Open-File Report 72-223, 28 pp. https://doi.org/10.3133/ofr72223
Leeds, D. (1974): Catalogue of Nicaraguan earthquakes. Bull. Seism. Soc. Am., 64(4), pp.1135-1158.
Molina, E.; Marroquín, G.; Escobar, J.; Talavera, E.; Rojas, W.; Climent, A.; Camacho, E.; Benito, B & Lindholm, C. (2008): Proyecto RESIS-II. Evaluación de la amenaza sísmica en Centroamérica. Informe, 237 pp.
Montagner J.P. & Kennett, B.L.N. (1995): How to reconcile body-wave and normal-mode reference Earth models? Geophys. J. Int., 125(1), pp. 229-24. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
Moreno, B.: González, O.; Alvarez, L. & Palma, M. (2014): Informe del trabajo realizado sobre el terremoto del 10/4/2014 y sus réplicas. Fondos de INETER, 55 pp.
Moreira A. & Santos M.Y. (2007). Concave Hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. En: Proceedings of the Second International Conference on Computer Graphics Theory and Applications - GM/R, pp. 61-68.
NOAA (1996): The Seismicity Catalog CD-ROM Collection, vol. 1,
https://www.ngdc.noaa.gov/hazard/data/cdroms/Seismicity_v1/
Ottemöller, L.; Voss, P. & Havskov, J. (2018). SEISAN earthquake analysis software for Windows, Solaris, Linux and MacOSX. Version 11.0, 566 pp. http://seisan.info
Ogata, Y. (1988). Statistical models for earthquake occurrence and residual analysis for point process, J. Amer. Statist. Ass., 83 (401), 9−27. DOI: 10.1080/01621459.1988.10478560
Reasenberg, P. (1985): Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90(B7), 5479-5495. DOI: 10.1029/JB090iB07p05479
Reasenberg, P. (2000). Program cluster2000x. https://earthquake.usgs.gov/research/software/#CLUSTER
Rokne (1995): The area of a simple polygon. In: Graphic Gems II(edit. J. Arvo). Academic Press, 492 pp.
Scordilis, E.M. (2006): Empirical global relations converting MS and mb to moment magnitude. J. Seismology, 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4
Segura, F.F. (2019): Reseña de la sismicidad en Nicaragua con énfasis en la Depresión Nicaragüense. Managua, 218 pp.
Segura, F. & Alvarez, L. (2016): Serie sísmica de Puerto Morazán, Junio de 2016, Nicaragua. Bol. Sismos y Volcanes de Nicaragua, junio 2016, pp. 45-53. https://webserver2.ineter.gob.ni/sis/bolsis/bolsis.html
Storchak, D.A.; Di Giacomo, D.; Engdahl, E.R.; Harris, J.; Bondár, I.; Lee, W.H.K; Bormann, P. & Villaseñor, A. (2015): The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction, Phys. Earth Planet. Int., 239(1), 48-63. DOI: 10.1016/j.pepi.2014.06.009.
USGS (2019): Earthquake Hazards Program. Search Earthquake Catalogue. https://earthquake.usgs.gov/earthquakes/search/
Utheim, T & Havskov, J. (2017): SC2SEI. Automatic transfer of phase readings and waveforms from a SeisComp3 data base to a SEISAN data base, Ver. 1.16. 33 pp .ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/SC2SEI/sc2sei_v1.00.pdf
Utsu, T. (1999): Representation and Analysis of the Earthquake Size Distribution. A Historical Review and Some New Approaches. Pure appl. Geophys. 155 (2), 509-535. https://doi.org/10.1007/s000240050276
Utsu, T.; Ogata, Y. & Matsu'ura, R.S. (1995): The centenary of the Omori formula for a decay law of after-shock activity. J. Phys. Earth, 43(1), 1-33, 1995. https://doi.org/10.4294/jpe1952.43.1
Utsu, T. & Ogata, Y. (1997) Computer program package: Statistical Analysis of point processes for Seismicity, SASeis, IASPEI Software Library for personal computers, the International Association of Seismology and Physics of Earth's Interior in collaboration with the American Seismological Society, Vol. 6, pp. 13-94.
Ward, P. L.; Harlow, J.D.; Gibbs, K. & Aburto, Q. (1973). Location of the main fault as determined from locations of some aftershocks in Proc. Conf. Managua Earthquake, C. Rojahn, Editor, Earthquake Engineering Research Institute, pp. 89-104.
Wells D. & Coppersmith, K. (1994): New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84(4), pp. 974–1002.