i

Convocatoria para el número 70, diciembre 2025, semitemático

 Geografías de la contestación y (re)apropiación territorial: Entre el despojo y la imaginación colectiva

Idiomas aceptados: español, inglés y portugués. 

Se invita a enviar los artículos completos mediante la plataforma oficial de la revista.

Fecha límite de envío: 15 de octubre de 2025

 

Para más información, por favor revisar este enlace

Antecedentes científicos para la incorporación de la medición de polvo en glaciares en el SEA: minería y seguridad hídrica de Santiago

Autores/as

Descargar

Resumen

La cuenca del río Maipo que alberga a la ciudad de Santiago es la que posee la mayor superficie englaciada de la zona norte y centro de Chile. Estos glaciares que abastecen de agua a Santiago, y que, en años muy secos, pueden contribuir hasta el 100% del caudal de verano del río Maipo, son afectados por el polvo proveniente de la minería y la ciudad. El polvo acelera el derretimiento de los glaciares. Sin embargo, el Servicio de Evaluación Ambiental (SEA) no ha incorporado la identificación del impacto del polvo en glaciares en la normativa, dejándolo a “buena voluntad de la industria minera”. Anglo American declaró que la minería no afectó a los glaciares durante la evaluación ambiental del proyecto Los Bronces Integrado. Esta expansión será parte del cuarto distrito minero más importante del mundo hacia 2050. La evaluación ambiental no incluyó mediciones in situ de polvo en glaciares ni su efecto. Proponemos, mediante la revisión del estado actual de los glaciares de las cuencas Mapocho y Olivares, del efecto del polvo en glaciares y de la aprobación política del proyecto Los Bronces Integrado, actualizar la guía “Contenidos Técnicos para la Evaluación Ambiental del Recurso Hídrico” del SEA. Esta debe incorporar el efecto del polvo en los glaciares mediante mediciones in situ, análisis satelital y simulación numérica. Nuestra propuesta permitirá identificar el impacto minero indirecto en glaciares, contribuyendo a preservar estas reservas de agua futura.

Palabras clave:

Albedo glaciar , monitoreo glaciar , polvo sobre glaciares , protección de glaciares , SEA

Referencias

Adebiyi, A., Kok, J. F., Murray, B. J., Ryder, C. L., Stuut, J. B. W., Kahn, R. A., Knippertz, P., Formenti, P., Mahowald, N. M., García-Pando, C. P., Klose, M., Ansmann, A., Samset, B. H., Ito, A., Balkanski, Y., Di Biagio C., Romanias, M., Huang, Y. and Meng, J. (2023). A review of coarse mineral dust in the Earth system. Aeolian Research, 60, 100849. https://doi.org/10.1016/j.aeolia.2022.100849

Arenson, L. U., Jakob, M. and Wainstein, P. (2014). Effects of Dust Deposition on Glacier Ablation and Runoff at the Pascua-Lama Mining Project, Chile and Argentina. Engineering Geology for Society and Territory, volume 1, 27-32. https://doi.org/10.1007/978-3-319-09300-0_6

Ayala, Á., Farías-Barahona, D., Huss, M., Pellicciotti, F., McPhee, J., and Farinotti, D. (2020). Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile. The Cryosphere, 14, 2005-2027. https://doi.org/10.5194/tc-14-2005-2020

Barandun, M., Bravo, C., Grobety, B., Jenk, T., Fang, L., Naegeli, K., Rivera, A., Cisternas, S., Münster, T., Schwikowski, M. (2022). Anthropogenic Influence on Surface Changes at the Olivares Glaciers; Central Chile. Sci. Total Environ, 833, 155068. https://doi.org/10.1016/j.scitotenv.2022.155068

Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, N. W., Uematsu, M., Costello, D. K., Young, R. W., Feely, R. A., Berland, J. A., Bernstein, R. E. and Greco, A. M. (1988). Long–range transport of giant mineral aerosol particles. Nature, 336(6199), 568-571. https://doi.org/10.1038/336568a0

Boisier, J. P., Rondanelli, R., Garreaud, R. D., & Muñoz, F. (2016). Anthropogenic and natural contributions to the southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43(1), 413-421. https://doi.org/10.1002/2015GL067265

Boubel, R.W., Fox, D.L., Rurner, D.B., Stern, A.C., (1994). Fundamental of Air Pollution. Academic Press, San Diego

Bravo, C., Cisternas, S., Viale, M., Paredes, P., Bozkurt, D., & García-Lee, N. (2025). An unseasonal atmospheric river drives anomalous summer snow accumulation on glaciers of the subtropical Andes. The Cryosphere, 19, 1897-1913. https://doi.org/10.5194/tc-19-1897-2025

Caponi, L., Formenti, P., Massabó, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier, S., Landrot, G., Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E., Balkanski, Y., Prati, P., and Doussin, J.-F. (2017). Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study, Atmos. Chem. Phys., 17, 7175-7191. https://doi.org/10.5194/acp-17-7175-2017

Caro, A, Gimeno, F, Rabatel, A, Condom, T. and Ruiz, J. (2020). Glacier clusters identification across Chilean Andes using topo-climatic variables. Investigaciones Geográficas, 60, 119–133. https://doi.org/10.5354/0719-5370.2020.59009

Caro, A., Condom, T., & Rabatel, A. (2021). Climatic and Morphometric Explanatory Variables of Glacier Changes in the Andes (8–55° S): New Insights From Machine Learning Approaches, Front. Earth Sci., 9, 713011. https://doi.org/10.3389/feart.2021.713011

Caro, A., Condom, T., Rabatel, A., Champollion, N., García, N., & Saavedra, F. (2024). Hydrological response of Andean catchments to recent glacier mass loss, The Cryosphere, 2024, 18, 2487-2507. https://doi.org/10.5194/tc-18-2487-2024

Caro, A., Condom, T., Rabatel, A., Aguayo, R., & Champollion, N. (2025). Glacio-hydrological changes along the Andes throughout the 21st Century. Scientific Reports. https://doi.org/10.21203/rs.3.rs-4714636/v1

CECs. (2013). Expediente: 1617 Plan de Monitoreo de Glaciares Pascua Lama versión 4 (PMGv4). BARRICK - PASCUA LAMA, Centro de Estudios Científicos. https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/1617

CECs. (2017). Estudio de glaciares descubiertos (Blancos), Centro de Estudios Científicos. Anexo 3.11-A. Proyecto Codelco División Andina. https://infofirma.sea.gob.cl/DocumentosSEA/MostrarDocumento?docId=98/af/489047648e6d57df8d21750bbb6006f0ceff

Cereceda-Balic, F., Ruggeri, M. F., Vidal, V., Ruiz, L., and Fu, J. S. (2022). Understanding the role of anthropogenic emissions in glaciers retreat in the central Andes of Chile. Environ. Res., 214, 113756. https://doi.org/10.1016/j.envres.2022.113756

Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant., Journal of Atmospheric Chemistry, 77(1), 35-48. https://doi.org/10.1007/s10874-020-09401-w

Codelco. (2025). Codelco y Anglo American firman histórico Memorándum de Entendimiento para impulsar desarrollo del distrito minero Andina - Los Bronces. https://www.codelco.com/prensa/2025/alianza-andina-los-bronces

Cuffey, K. and Paterson, W. (2010). The Physics of Glaciers (Academic Press) 4th edn

DGA. (2012). Plan de acción para la conservación de glaciares ante el cambio climático. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, S.I.T. N° 306. https://bibliotecadigital.ciren.cl/items/0f6c8141-b8a3-4d65-a5bf-01cd9b2db810

DGA. (2014). Caracterización glacioquímica de elementos traza en muestras de nieve. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, S.I.T. N° 351. https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/d4d8ef96-d581-4542-8a24-d509f1786199/content

DGA. (2015a). Diagnóstico plan maestro de recursos hídricos Región Metropolitana de Santiago. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, S.I.T. N° 371. https://bibliotecadigital.ciren.cl/items/c053dbd4-5181-4ec5-a562-bc6d2aec98bf

DGA. (2015b). Actualización de la evaluación de los recursos hídricos superficiales en la cuenca del Río Maipo. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, SDT N° 369. https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/98c86bbc-f034-4b8d-bac5-adbe19ef5a56/content

DGA. (2018). Diseño y construcción de la red de monitoreo para glaciología y cambio climático. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, S.I.T. N° 411. https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/861485d8-a8fd-40cb-b31b-ec59765acb97/content

DGA. (2021). Variaciones recientes de glaciares en Chile, según principales zonas glaciológicas. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile, S.I.T. N° 261. https://bibliotecadigital.ciren.cl/items/507f7130-4e5c-437f-891b-cd98ade9f72a

DGA. (2022). Inventario público de glaciares de Chile. Dirección General de Aguas, Ministerios de Obras Públicas, Gobierno de Chile. https://dga.mop.gob.cl/Paginas/InventarioGlaciares.aspx

DGA. (2024). Definiciones estratégicas de la Dirección General de Aguas. https://dga.mop.gob.cl/acercadeladga/mision/Documents/Ficha%20de%20Definiciones%20Estrat%C3%A9gicas%20a%C3%B1o%202024.pdf

Dussaillant, I., Berthier, E., Brun, F. et al. (2019). Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802-808. https://doi.org/10.1038/s41561-019-0432-5

Falvey, M. & Garreaud, R.D. (2009). Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res.-Atmos., 114, D04102. https://doi.org/10.1029/2008jd010519

Farías-Barahona, D., Ayala, Á., Bravo, C., Vivero, S., Seehaus, T., Vijay, S., Schaefer, M., Buglio, F., Casassa, G., & Braun, M.H. (2020). 60 Years of Glacier Elevation and Mass Changes in the Maipo River Basin, Central Andes of Chile. Remote Sensing, 12(10), 1658. https://doi.org/10.3390/rs12101658

Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., and Zambrano-Bigiarini, M. (2017). The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307-6327. https://doi.org/10.5194/hess-21-6307-2017

Garreaud, R.D., Vuille, M., Compagnucci, R. and Marengo., J. (2009). Present-day South American climate. Palaeogeogr. Palaeocl., 281(3-4), 180-195. https://doi.org/10.1016/j.palaeo.2007.10.032

Geoaire. (2015). Informe mediciones de material particulado sedimentable (MPS) proyecto Pascua Lama, primer semestre. Geoaire Limitada, 2015. https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/35654

Gilardoni, S., Di Mauro, B., Bonasoni, P. (2022). Black carbon, organic carbon, and mineral dust in South American tropical glaciers: a review. Glob Planet Chang, 103837. https://doi.org/10.1016/j.gloplacha.2022.103837

Hanna, E., Mernild, S.H., Yde, J.C., & Villiers, S. de. (2017). Surface Air Temperature Fluctuations and Lapse Rates on Olivares Gamma Glacier, Rio Olivares Basin, Central Chile, from a Novel Meteorological Sensor Network. Advances in Meteorology, 6581537, 15. https://doi.

org/10.1155/2017/6581537

Hernández, J., Paredes, P., Carrión, D., & Rivera A. (2017). Ice elevation changes surveyed with Airborne Laser Scanning Data. First international symposium on geoscience and remote sensing (GRSS-CHILE). https://doi.org/10.1109/GRSS-CHILE.2017.7996012

Herrera, P. & Segovia, A. (2019). Ley de Protección de Glaciares: El devenir de un conflicto socioambiental. Investigaciones Geográficas: Una Mirada Desde El Sur, 58, 119–135. https://doi.org/10.5354/0719-5370.2019.52214

Ibáñez, C. & Robledo Ceballos, J. (2023). Glacier retreat with optical and radar images: Olivares Glacier and Juncal sur. Revista Geográfica De Chile Terra Australis, 58(2). https://doi.org/10.23854/07199562.202258esp.Ibanez45

JVRM. (2025). Declaración de la Junta de Vigilancia del río Maipo primera sección. https://portalmetropolitano.cl/el-estado-de-las-fuentes-de-agua-para-la-rm-y-la-incertidumbre-para-la-disponibilidad-futura/

Kaser, G., Fountain, A.G. and Jansson, P. A. (2002). Manual for monitoring the mass balance of mountain glaciers. IHP-VI- Technical documents in hydrology, 59

Lapere, R., Huneeus, N., Mailler, S., Menut, L., and Couvidat, F. (2023). Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes, Atmos. Chem. Phys., 23, 1749-1768. https://doi.org/10.5194/acp-23-1749-2023

Lapere, R., Menut, L., Mailler, S., and Huneeus, N. (2021). Seasonal variation in atmospheric pollutants transport in central Chile: dynamics and consequences, Atmos. Chem. Phys., 21, 6431-6454. https://doi.org/10.5194/acp-21-6431-2021

Liang, S. (2001). Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sensing of Environment, 76(2), 213-238. https://doi.org/10.1016/S0034-4257(00)00205-4

Lliboutry, L. (1998). Glaciers of South America I–6 – Glaciers of Chile and Argentina. In Williams, JS and Ferrigno, JG eds. Geological survey professional paper 1386–I, SATELLITE IMAGE ATLAS of glaciers of the world. United States government printing office, Washington, DC

Malmros, J. K., Mernild, S. H., Wilson, R., Yde, J. C., and Fensholt, R. (2016). Glacier Area Changes in the central Chilean and Argentinean Andes 1955–2013/14, J. Glaciol., 62, 391–401. https://doi.org/10.1017/jog.2016.43

Marangunic, C., Ugalde, F., Apey, A., Armendáriz, I., Bustamante, M., and Peralta, C. (2021). Ecosistemas de montaña de la cuenca alta del río Mapocho, Glaciares en la cuenca alta del río Mapocho: variaciones y características principales, AngloAmerican – CAPES UC, Santiago de Chile

Masiokas, M. H., Christie, D. A., Le Quesne, C., Pitte, P., Ruiz, L., Villalba, R., Luckman, B. H., Berthier, E., Nussbaumer, S. U., González-Reyes, Á., McPhee, J., and Barcaza, G. (2016). Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data, The Cryosphere, 10, 927–940. https://doi.org/10.5194/tc-10-927-2016

Oerlemans, J., Giesen, R.H., Van Den Broeke, M.R. (2009). Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). Journal of Glaciology, 55(192):729-736. https://doi.org/10.3189/002214309789470969

Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C. and Landry, C. C. (2012). Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48(7), 1-14. https://doi.org/10.1029/2012WR011985

Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., Corripio. J. (2005). An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland. Journal of Glaciology, 51(175),

-587. https://doi.org/10.3189/172756505781829124

Peña, H. and Nazarala, B. (1987). Snowmelt-runoff simulation model of a central Chile Andean basin with relevant orographic effects, in: Large Scale Effects of Seasonal Snow Cover, Proceedings of the Vancouver Symposium, http://www.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=9001865

Peña, M. A. and Olmedo, F. (2019). Estimating spatiotemporal variations of albedo in the Olivares glaciers, central Chile. Revista Geográfica De Chile Terra Australis, 55(1), 35–44. https://doi.org/10.23854/07199562.2019551.Pena35

Potocki, M., Dixon, D. A., Kurbatov, A. V., Casassa, G., Zamora, R., Handley, M. J., Introne, D., Grigholm, B., Korotkikh, E. V., Birkel, S. D., et al. (2022). Trace metal emission history captured in a Chilean ice core. Atmos. Environ, 276, 119002. https://doi.org/10.1016/j.atmosenv.2022.119002

Rivera, A., Bown, F., Napoleoni, F., Muñoz, C. and Vuille, M. (2017). Manual Balance de masa glaciar. Centro de Estudios Científicos, University at Albany. https://bibliotecadigital.ciren.cl/items/dd580028-0042-40f7-a628-d3414f5c7808

Rutllant, J. and Fuenzalida, H. (1991). Synoptic aspects of the central chile rainfall variability associated with the Southern Oscillation. Int. J. Climatol., 11(1), 63–76. https://doi.org/10.1002/joc.3370110105

SEA. (2001). Estudio de Impacto Ambiental de Pascua Lama, Servicio de Evaluación Ambiental. https://seia.sea.gob.cl/seia-web/ficha/fichaPrincipal.php?id_expediente=3053&idExpediente=3053

SEA. (2022a). Resolución de Calificación Ambiental N° 20229900122/2022. Estudio de Impacto Ambiental de Proyecto Los Bronces Integrado

SEA. (2022b). Criterio de evaluación en el SEIA: Contenidos técnicos para la evaluación ambiental del recurso hídrico. Servicio de Evaluación Ambiental. https://www.sea.gob.cl/sites/default/files/imce/archivos/2022/09/21/05_dt_recurso_hidrico.pdf

SEA. (2023). Resolución N°202399101873/2023, Estudio de Impacto Ambiental de Proyecto Los Bronces Integrado

SEA. (2024). Misión del Servicio de Evaluación Ambiental. https://www.sea.gob.cl/mision

SEA. (2025). Línea Base proyecto los Bronces Integrado. https://infofirma.sea.gob.cl/DocumentosSEA/MostrarDocumento?docId=da/26/9e785f72eae4b449e760e3547cd08f8c5359

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change (3rd ed.). Wiley.

Segovia, A., and Casassa, G. (2025). Cuencas Olivares-Colorado: Caracterización glaciológica y valoración de servicios ecosistémicos vinculados al recurso hídrico. Revista de Geografía Norte Grande, 91

Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., and Landry, C. C. (2012). Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resources Research, 48(7), 1-11

Takeuchi, N. and Li, Z. (2008). Characteristics of Surface Dust on Ürümqi Glacier No. 1 in the Tien Shan Mountains, China. Arctic, Antarctic, and Alpine Research, 40(4), 744–750. https://doi.org/10.1657/1523-0430(07-094)[TAKEUCHI]2.0.CO;2

Zardi, D., & Whiteman, C. D. (2013). Diurnal mountain wind systems. In F. K. Chow, S. F. J. De Wekker, & B. Snyder (Eds.), Mountain weather research and forecasting (pp. 35-119). Springer.