i

Convocatoria para el número 70, diciembre 2025, semitemático

 Geografías de la contestación y (re)apropiación territorial: Entre el despojo y la imaginación colectiva

Idiomas aceptados: español, inglés y portugués. 

Se invita a enviar los artículos completos mediante la plataforma oficial de la revista.

Fecha límite de envío: 15 de octubre de 2025

 

Para más información, por favor revisar este enlace

Mapeando el calor urbano: desarrollo de cartografías térmicas abiertas en Zaragoza

Autores/as

Descargar

Resumen

Este artículo presenta un estudio detallado sobre la distribución térmica en la ciudad de Zaragoza, utilizando métodos avanzados de interpolación para generar mapas de temperatura a alta resolución a escala estacional. El análisis revela una clara diferencia entre las zonas urbanas y rurales, con una mayor concentración de calor en el entorno urbano. Se detectaron variaciones de hasta 1,8 °C en las temperaturas máximas y hasta 3,5 °C en las mínimas entre ambas zonas, destacando el efecto de la Isla de Calor Urbana (ICU), que llega a incrementar hasta más de 2 °C las temperaturas nocturnas en invierno en algunos sectores de la ciudad. El estudio proporciona una herramienta de gran utilidad para la gestión climática urbana, poniendo a disposición cartografías térmicas abiertas, es decir, mapas de libre acceso a través de un visor interactivo desarrollado por el Ayuntamiento de Zaragoza, que permite visualizar de manera accesible para toda la ciudadanía las áreas más afectadas por las variaciones térmicas. Esta investigación no solo aporta un diagnóstico preciso de la situación actual, sino que subraya la creciente relevancia de estudiar el clima urbano en un contexto de triple crisis planetaria y su impacto en la población urbana.

Palabras clave:

Cartografía , datos abiertos , isla de calor urbano , Zaragoza

Referencias

Alcoforado, M. J., Lopes, A., Alves, E., & Canário, P. (2014). Lisbon Heat Island. Finisterra, 49(98), 61-80. https://doi.org/10.18055/finis6456

Amorim, M. C. de C. T., & Dubreuil, V. (2017). Intensity of urban heat islands in tropical and temperate climates. Climate, 5(4). https://doi.org/10.3390/cli5040091

Ayuntamiento de Zaragoza. (s.f.). Islas de calor. https://www.zaragoza.es/sede/portal/idezar/mapa/islas-de-calor/

Barrao, S., Serrano-Notivoli, R., Cuadrat, J. M., Tejedor, E., & Saz, M. Á. (2022). Characterization of the UHI in Zaragoza (Spain) using a quality-controlled hourly sensor-based urban climate network. Urban Climate, 44, 101207. https://doi.org/10.1016/j.uclim.2022.101207

Bassett, R., Cai, X.-M., Chapman, L., Heaviside, C., Thornes, J. E., Muller, C. L., Young, D. T., & Warren, E. L. (2016). Observations of urban heat island advection from a high-density monitoring network. Quarterly Journal of the Royal Meteorological Society, 142(699), 2434-2441. https://doi.org/10.1002/qj.2836

Camarillo-Naranjo, J. M., Álvarez-Francoso, J. I., Limones-Rodríguez, N., Pita-López, M. F., & Aguilar-Alba, M. (2019). The global climate monitor system: from climate data-handling to knowledge dissemination. International Journal of Digital Earth, 12(4), 394-414. https://doi.org/10.1080/17538947.2018.1429502

Cardesín Díaz, J. M., & Araujo, J. M. (2017). Historic Urbanization Process in Spain (1746-2013). Journal of Urban History, 43(1), 33-52. https://doi.org/10.1177/0096144215583481

Chakraborty, T., & Lee, X. (2019). A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth Observation and Geoinformation, 74, 269-280. https://doi.org/10.1016/j.jag.2018.09.015

Chapman, L., Muller, C. L., Young, D. T., Warren, E. L., Grimmond, C. S. B., Cai, X.-M., & Ferranti, E. J. S. (2015). The birmingham urban climate laboratory: An open meteorological test bed and challenges of the Smart city. Bulletin of the American Meteorological Society, 96(9), 1545-1560. https://doi.org/10.1175/BAMS-D-13-00193.1

Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., & He, Z. (2012). Sky view factor analysis of Street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. International Journal of Climatology, 32(1), 121-136. https://doi.org/10.1002/joc.2243

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E. M., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015

Cuadrat, J. M., De la Riva, J., López, F., & Martí, A. (1993). El medio ambiente urbano en Zaragoza. Observaciones sobre la “isla de calor”. Anales de Geografía de La Universidad Complutense, 13, 127-138. https://revistas.ucm.es/index.php/AGUC/article/view/AGUC9393110127A

Cuadrat, J. M., Saz Sánchez, M. Á., Serrano-Notivoli, R., & Tejedor, E. (2014). El clima del término municipal de Zaragoza en el contexto del cambio global. In Ayuntamiento de Zaragoza. Agenda 21. https://www.zaragoza.es/contenidos/medioambiente/clima.pdf

Cuadrat, J. M., Serrano-Notivoli, R., Barrao, S., Saz, M. Á., & Tejedor, E. (2022). Variabilidad temporal de la isla de calor urbana de la ciudad de Zaragoza (España). Cuadernos de Investigación Geográfica, 48(1), 97-110. https://doi.org/10.18172/cig.5022

Cuadrat, J. M., & Vicente-Serrano, S. (2003). Surface wind direction influence on spatial patterns of urban heat island in Zaragoza (Spain). Geophysical Research Abstracts, 5(02509).

Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30-42. https://doi.org/10.1016/j.jag.2017.12.009

Dirksen, M., Ronda, R. J., Theeuwes, N. E., & Pagani, G. A. (2019). Sky view factor calculations and its application in urban heat island studies. Urban Climate, 30, 100498. https://doi.org/10.1016/j.uclim.2019.100498

Dobrovolný, P., & Krahula, L. (2015). The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geographical Reports, 23(3), 8-16. https://doi.org/10.1515/MGR-2015-0013

Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobías, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M. L., Guo, Y.-L., Wu, C., Kan, H., Yi, S.-M., De Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., … Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet, 386(9991), 369-375. https://doi.org/10.1016/S0140-6736(14)62114-0

Giridharan, R., & Kolokotroni, M. (2009). Urban heat island characteristics in London during winter. Solar Energy, 83(9), 1668-1682. https://doi.org/10.1016/j.solener.2009.06.007

Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8), 1711-1721. https://doi.org/10.1016/j.cageo.2008.10.011

Hu, X.-M., Xue, M., Klein, P. M., Illston, B. G., & Chen, S. (2016). Analysis of Urban Effects in Oklahoma City using a Dense Surface Observing Network. Journal of Applied Meteorology and Climatology, 55(3), 723-741. https://doi.org/10.1175/JAMC-D-15-0206.1

Instituto Geográfico Nacional. (2022). Cifras oficiales de población de los municipios españoles. https://www.ine.es/jaxiT3/Datos.htm?t=2907

Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., & Lafaye, M. (2007). Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1), 66-74. https://doi.org/10.1016/j.rse.2006.07.012

Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173-189. https://doi.org/10.1016/j.envsoft.2013.12.008

Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto International, 16(1), 65-70. https://doi.org/10.1080/10106040108542184

Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564. https://doi.org/10.1016/j.scs.2021.103564

Masson, V., Lemonsu, A., Hidalgo, J., & Voogt, J. (2020). Urban Climates and Climate Change. Annual Review of Environment and Resources, 45(1), 411-444. https://doi.org/10.1146/annurev-environ-012320-083623

Mentaschi, L., Duveiller, G., Zulian, G., Corbane, C., Pesaresi, M., Maes, J., ... & Feyen, L. (2022). Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environmental Change, 72, 102441. https://doi.org/10.1016/j.gloenvcha.2021.102441

Moreno-Monroy, A. I., Schiavina, M., & Veneri, P. (2021). Metropolitan areas in the world. Delineation and population trends. Journal of Urban Economics, 125, 103242. https://doi.org/10.1016/j.jue.2020.103242

Neset, T.-S., Opach, T., Lion, P., Lilja, A., & Johansson, J. (2016). Map-Based Web Tools Supporting Climate Change Adaptation. The Professional Geographer, 68(1), 103-114. https://doi.org/10.1080/00330124.2015.1033670

Nikoloudakis, N., Stagakis, S., Mitraka, Z., Kamarianakis, Y., & Chrysoulakis, N. (2020). Spatial interpolation of urban air temperatures using satellite-derived predictors. Theoretical and Applied Climatology, 141(1-2), 657-672. https://doi.org/10.1007/s00704-020-03230-3

Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018

Oke, T. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. https://doi.org/10.1002/qj.49710845502

Oke, T., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. https://doi.org/10.1017/9781139016476

Pietrapertosa, F., Olazabal, M., Simoes, S. G., Salvia, M., Fokaides, P. A., Ioannou, B. I., Viguié, V., Spyridaki, N.-A., De Gregorio-Hurtado, S., Geneletti, D., Heidrich, O., Tardieu, L., Feliu, E., Rižnar, K., Matosović, M., Balzan, M. V., Flamos, A., Šel, N. B., & Reckien, D. (2023). Adaptation to climate change in cities of Mediterranean Europe. Cities, 140, 104452. https://doi.org/10.1016/j.cities.2023.104452

Quintana-Talvac, C., Corvacho-Ganahin, O., Smith, P., Sarricolea, P., Prieto, M., & Meseguer-Ruiz, O. (2021). Urban Heat Islands and Vulnerable Populations in a Mid-Size Coastal City in an Arid Environment. Atmosphere, 12(7), 917. https://doi.org/10.3390/atmos12070917

Reckien, D., Salvia, M., Heidrich, O., Church, J. M., Pietrapertosa, F., De Gregorio-Hurtado, S., D’Alonzo, V., Foley, A., Simoes, S. G., Krkoška Lorencová, E., Orru, H., Orru, K., Wejs, A., Flacke, J., Olazabal, M., Geneletti, D., Feliu, E., Vasilie, S., Nador, C., … Dawson, R. (2018). How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production, 191, 207-219. https://doi.org/10.1016/j.jclepro.2018.03.220

Royé, D., Sera, F., Tobías, A., Lowe, R., Gasparrini, A., Pascal, M., De’Donato, F., Nunes, B., & Teixeira, J. P. (2021). Effects of Hot Nights on Mortality in Southern Europe. Epidemiology, 487-498. https://doi.org/10.1097/EDE.0000000000001359

Rozenblat, C., & Cicille, P. (2004). Les villes européennes: analyse comparative. On the W@terfront. Public Art. Urban Design.Civic Participation.Urban Regeneration, 0(5), 1-94. https://doc.rero.ch/record/5907/files/Villes_Europeennes.pdf

Salamanca, F., Martilli, A., & Yagüe, C. (2012). A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. International Journal of Climatology, 32(15), 2372-2386. https://doi.org/10.1002/joc.3398

Salvia, M., Olazabal, M., Fokaides, P. A., Tardieu, L., Simoes, S. G., Geneletti, D., De Gregorio Hurtado, S., Viguié, V., Spyridaki, N.-A., Pietrapertosa, F., Ioannou, B. I., Matosović, M., Flamos, A., Balzan, M. V., Feliu, E., Rižnar, K., Šel, N. B., Heidrich, O., & Reckien, D. (2021). Climate mitigation in the Mediterranean Europe: An assessment of regional and city-level plans. Journal of Environmental Management, 295, 113146. https://doi.org/10.1016/j.jenvman.2021.113146

Sarricolea, P., Smith, P., Romero-Aravena, H., Serrano-Notivoli, R., Fuentealba, M., & Meseguer-Ruiz, O. (2022). Socioeconomic inequalities and the surface heat island distribution in Santiago, Chile. Science of The Total Environment, 832, 155152. https://doi.org/10.1016/j.scitotenv.2022.155152

Saz, M. Á., Vicente-Serrano, S., Serrano, J., & Prats, C. (2003). Spatial patterns estimation of urban heat island of Zaragoza (Spain) using GIS. 5th International Conference on Urban Climate, 4.

Šećerov, I. B., Savić, S. M., Milošević, D. D., Arsenović, D. M., Dolinaj, D. M., & Popov, S. B. (2019). Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment, 191(2), 89. https://doi.org/10.1007/s10661-019-7210-0

Serrano-Notivoli, R., Lemus-Canovas, M., Barrao, S., Sarricolea, P., Meseguer-Ruiz, O., & Tejedor, E. (2022). Heat and cold waves in mainland Spain: Origins, characteristics, and trends. Weather and Climate Extremes, 37, 100471. https://doi.org/10.1016/j.wace.2022.100471

Shi, Y., Katzschner, L., & Ng, E. (2018). Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity. Science of The Total Environment, 618, 891-904. https://doi.org/10.1016/j.scitotenv.2017.08.252

Smith Guerra, P., & Henríquez Ruiz, C. (2021). Propuesta de un indicador para evaluar la calidad climática urbana: estudio de caso en una ciudad media mediterránea chilena. Cuadernos de Geografía: Revista Colombiana de Geografía, 30(1), 144-157. https://doi.org/10.15446/rcdg.v30n1.79653

Smith Guerra, P., Peralta Trigo, O., Sarricolea, P., Thomas Cabrera, F., & Meseguer-Ruiz, O. (2023). Climate-sensitive planning. Opportunities through the study of LCZs in Chile. Building and Environment, 242, 110444. https://doi.org/10.1016/j.buildenv.2023.110444

Smoliak, B. V., Snyder, P. K., Twine, T. E., Mykleby, P. M., & Hertel, W. F. (2015). Dense Network Observations of the Twin Cities Canopy-Layer Urban Heat Island. Journal of Applied Meteorology and Climatology, 54(9), 1899-1917. https://doi.org/10.1175/JAMC-D-14-0239.1

Stewart, I. D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217. https://doi.org/10.1002/joc.2141

Stewart, I. D., & Oke, T. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1

Straub, A., Berger, K., Breitner, S., Cyrys, J., Geruschkat, U., Jacobeit, J., Kühlbach, B., Kusch, T., Philipp, A., Schneider, A., Umminger, R., Wolf, K., & Beck, C. (2019). Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany. Urban Climate, 29, 100491. https://doi.org/10.1016/j.uclim.2019.100491

Svensson, M. K. (2004). Sky view factor analysis - implications for urban air temperature differences. Meteorological Applications, 11(3), 201-211. https://doi.org/10.1017/S1350482704001288

Vicente-Serrano, S., Cuadrat, J. M., & Saz, M. Á. (2005). Spatial patterns of the urban heat island in Zaragoza (Spain). Climate Research, 30(1), 61-69. https://doi.org/10.3354/cr030061

Vicente-Serrano, S., Cuadrat, J. M., & Saz, M. Á. (2003). Topography and vegetation cover influence on urban heat island of Zaragoza (Spain). 5th International Conference on Urban Climate, 4.

Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8

Waqar, M. M., Mirza, J. F., Mumtaz, R., & Hussain, E. (2012). Development of new indices for extraction of built-up area and bare soil from landsat. Open Access Scientific Reports, 1(1). https://doi.org/http://dx.doi.org/10.4172/scientificreports.136

Warren, E. L., Young, D. T., Chapman, L., Muller, C. L., Grimmond, C. S. B., & Cai, X.-M. (2016). The Birmingham Urban Climate Laboratory-A high density, urban meteorological dataset, from 2012-2014. Scientific Data, 3, 1-8. https://doi.org/10.1038/sdata.2016.38

Zhang, K., Oswald, E. M., Brown, D. G., Brines, S. J., Gronlund, C. J., White-Newsome, J. L., Rood, R. B., & O’Neill, M. S. (2011). Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environmental Research, 111(8), 1046-1053. https://doi.org/10.1016/j.envres.2011.08.012

Zölch, T., Maderspacher, J., Wamsler, C., & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening, 20, 305-316. https://doi.org/10.1016/j.ufug.2016.09.011